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We derive an analytical expression which allows efficient computation of the effect of all the Fermi-surface
trajectories induced by a combination of Bragg scattering and magnetic breakdown on the in-plane components
of the resistivity tensor. The particular network of coupled orbits which we consider was first formulated by
Falicov and Sievert, who studied the problem numerically. Our approach, based upon a method used previously
to derive an analytical solution for interlayer transport, allows us to show that the conductivity tensor can be
written as a sum of a matrix representing the effect of total magnetic breakdown and one representing a
combination of complex electronic trajectories, and we find a compact expression for the in-plane components
of the resistivity tensor that can be evaluated straightforwardly.
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I. INTRODUCTION

Magnetoresistance has long been used as a tool to study
the Fermi surface of metals.1,2 The observation of quantum
oscillations provides a measure of the cross-sectional area of
closed pockets �due to the quantization of the Landau levels�.
The background magnetoresistance also contains information
about all the electronic orbits induced by the magnetic field.
For example, a transverse magnetoresistance saturating in
high field can be evidence for the presence of closed orbits
while a magnetoresistance that increases quadratically with
field can indicate open orbits. A number of effects can com-
plicate this picture and one such is magnetic breakdown, a
concept first introduced to explain a giant orbit observed in
magnesium.3 Because of the periodic potential in a crystal,
small gaps in the dispersion sometimes open up at the
Brillouin-zone edge, splitting the Fermi surface into distinct
sections. In low magnetic fields, electrons traverse the Fermi
surface under the action of the magnetic field and Bragg
scatter at the Brillouin-zone edge. In a sufficiently strong
magnetic field it is possible for an electron to tunnel from
one segment of the Fermi surface to another.3,4 This is be-
cause in high magnetic field, mixing of states between dif-
ferent pieces of the Fermi surface can increase the likelihood
of magnetic breakdown, so that the resulting orbit more
closely resembles that which would be obtained in the
absence of the periodic potential.5

The presence of magnetic breakdown presents a challenge
for the simulations of magnetoresistance. This is because at
the points on the Brillouin-zone edge intersected by the
Fermi surface �points which we call magnetic breakdown
junctions� there is a probability p for magnetic breakdown to
occur and this is given by p=exp�−B0 /B�, where B0 is the
characteristic breakdown field; the problem is that under
usual experimental conditions p is between 0 and 1. Thus
there is a hierarchy of complex trajectories that must be
summed to account for all possible contributions to the con-
ductivity in which magnetic breakdown either does or does
not occur at each magnetic breakdown junction. If a quasi-
particle crosses N magnetic breakdown junctions, one has to

consider 2N possible trajectories with their correct probabi-
listic weightings and this complicates a direct computation of
magnetoresistance since one has to sum over trajectories
with arbitrarily long path lengths and hence arbitrarily large
values of N.

In order to calculate how magnetic breakdown can change
the connectivity of the orbits6 and thus the resistivity, Falicov
and Sievert in 1965 provided a model7 that generalized the
Chambers path-integral method8 to include magnetic break-
down at a finite number of points. This was used to evaluate
the magnetoresistance in a number of model Fermi surfaces,
although the calculations were performed numerically.

More recently, the problem of the effect of magnetic
breakdown on the magnetoresistance in a network of coupled
orbits was treated analytically,9 though the focus of this work
was on interlayer transport. This is because the newer calcu-
lations are motivated by recent experiments on quasi-two-
dimensional organic metals10–13 in which magnetotransport
experiments have been particularly illuminating.14 In this pa-
per we use the techniques developed in Ref. 9 �see also Ref.
15� to derive an analytical expression for the in-plane com-
ponents of the resistivity tensor in the Falicov-Sievert model.
This expression allows the underlying physics of the magne-
totransport to be more clearly extracted and will allow a
more convenient comparison with experimental data.

II. INTRODUCTION TO THE MODEL

In this paper, we consider the quasi-two-dimensional
Fermi surface shown in Fig. 1�a� in which the dispersion is

given by E�k�=
�2�kx

2+ky
2�

2m� −2t� cos kzd�, where m� is the effec-
tive mass, kF is the Fermi wave vector, d� is the interlayer
spacing, and the interlayer hopping t� is small �t�

��kF /d��. The Fermi surface consists of a cylinder with
volume �kF

2 �
2�
d�

and thus the number density of electrons is
n=kF

2 /2�d�. The Brillouin-zone edges are placed at ky
= �kF cos �. Quasiparticles orbit around the Fermi surface
with constant kz when B lies along the interlayer direction. In
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very low B because of Bragg reflection, only open orbits
�Fig. 1�b�� and small closed orbits �the � orbit, Fig. 1�c��
occur around the distinct sections of the Fermi surface. In
high B, mixing between the states on the two Fermi-surface
sections leads to magnetic breakdown at the four magnetic
breakdown junctions. At these junctions a quasiparticle “tun-
nels” in k space between the Fermi-surface sections, result-
ing in a single large closed orbit �the 	 orbit, Fig. 1�d��. This
model is equivalent to the situation outlined in Fig. 1 of Ref.
7 but the notation has been chosen to link with the physical
situation relevant to a particular family of organic metals.9,10

III. MAGNETORESISTANCE WITH NO
BRAGG SCATTERING

In this section we review the standard calculation of mag-
netoresistance in the case of full magnetic breakdown �i.e.,
p=1� which is equivalent to assuming a very high magnetic
field and ignoring any Bragg scattering. In this case we con-
sider only the effect of a single closed breakdown orbit �i.e.,
the case of Fig. 1�d��. The Boltzmann equation gives the
conductivity tensor


�	 = e2�g�EF��v�v	�FS �1�

as an average of velocity correlations over the Fermi surface,
where v	 is given by

v	 = �
0

� e−t/�

�
v	�k�t��dt �2�

and g�E�=m� /d���2 is the density of states. The quasipar-
ticle orbits lie in a plane perpendicular to the magnetic field
B and orbit the Fermi surface with angular frequency c
given by c=eB /m� if B is perpendicular to the quasi-two-
dimensional planes. Writing �=ct+�0, we have that

v	 =
1

c�
�

�0

�

v	�k�e−��−�0�/c�d� �3�

and so the conductivity tensor can be written as


�	 =

0

vF
2��

�
0

2�

d�0v��
�0

�

v	�k�e−��−�0�/�d� , �4�

where

� = c� =
eB�

m�
�5�

and


0 =
e2m�vF

2�

2��2d�

=
ne�

B
. �6�

Neglecting the small effect of the interplane warping t� on
orbit size and considering only the in-plane components of
the conductivity tensor �, we proceed as follows. Setting
vx=vF cos � and vy =vF sin �, and assuming full magnetic
breakdown �so all the orbits just go round the cylinder with
no Bragg scattering�, the integral can be evaluated to give

� =

0

1 + �2� 1 �

− � 1
	 �7�

and inverting this tensor yields the resistivity tensor

� = �−1 = 
0
−1�1 − �

� 1
	 �8�

or equivalently

� = � 
0
−1 − B/ne

B/ne 
0
−1 	 . �9�

This result is exactly what one expects from the simple
theory of metals: no magnetoresistance �because �xx=�yy
=
0

−1 is not field dependent� and a simple Hall effect �xy
=−�yx=RHB where RH=1 /ne. For later reference, we will
denote the simple form of the resistivity tensor with no mag-
netic breakdown in Eq. �8� as �0.

IV. MAGNETORESISTANCE INCLUDING MAGNETIC
BREAKDOWN AND BRAGG SCATTERING

A treatment fully including both magnetic breakdown and
Bragg scattering can be performed using the method de-
scribed in Ref. 9. Setting ��=v� /vF with �x=cos � and �y
=sin �, Eq. �4� becomes


�	 =

0

��
�

0

2�

d�0��e�0/��
�0

�

�	�k�e−�/�d� �10�

and with the definitions of the functions E�
��x�

E�
��x� = ���x�e�x/�, �11�

the conductivity can be written


�	 =

0

��
�

0

2�

d�0E�
+��0��

�0

�

E	
−���d� . �12�

What makes Eq. �12� challenging to evaluate is that the in-
tegrand changes depending on the path taken by the quasi-
particle which, at each magnetic breakdown junction of the
orbit, can either undergo magnetic breakdown tunneling
�with probability p
e−B0/B� or Bragg reflection �with prob-
ability q=1− p�.1,5 The strategy for solving this problem fol-
lows the earlier approach9,15 of separating the motion of elec-

ky

kx

QP

A1A2

B1

B2

FIG. 1. �a� The Fermi surface in the kx-ky plane showing the
points where magnetic breakdown can occur which are at �kx ,ky�
= ��kF sin � , �kF cos �� �these are called magnetic breakdown
junctions�. The azimuthal coordinate of a quasiparticle at the point
labeled QP is �. �b� An open orbit �comprising the repeated tra-
versal of the B1 section�. �c� Closed orbit �the � orbit, comprising
the repeated traversal of A1 and A2�. �d� Breakdown orbit �the 	
orbit, comprising A1-B1-A2-B2�.
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trons in the four different segments of the orbit and
constructing recursive equations which encode all the infor-
mation about the behavior at the magnetic breakdown junc-
tions. In this way we can write the conductivity tensor as


�	 =

0

��
��

+ · ��	
init + ��I − ��−1 · �	

−� , �13�

where the vectors ��
� and ��

init are given by

��
� =�

�
0

2�

dxE�
��x�

a�1�
2�

�

dxE�
��x�

�ab��1�
�

�+2�

dxE�
��x�

�a2b��1�
�+2�

2�

dxE�
��x�
� �14�

and

��
init =�

�
�0

2�

d�E�
−���

a−1�
�0

�

d�E�
−���

�ab�−1�
�0

�+2�

d�E�
−���

�a2b�−1�
�0

2�

d�E�
−���

� , �15�

and the matrix � which encodes all the breakdown probabili-
ties and scattering is given by

� =�
a 0 0 0

0 b 0 0

0 0 a 0

0 0 0 b
� ·�

0 p q 0

0 q p 0

q 0 0 p

p 0 0 q
� , �16�

where a=exp�−2� /�� and b=exp�−��−2�� /��.
The integrals can be performed analytically and after

much simplification �see Appendix� the conductivity can be
obtained as

� =

0

1 + �2� 1 �

− � 1
	 + �

2
0

1 + �2X , �17�

where the parameter � is given by

� =
4�

��1 + �2�� q�1 + ab�cos2 �

1 − bq + a�q + b�p2 − q2��� �18�

and the matrix X is given by

X = � �2 sin2 � − cos2 � − � − ��2 + 1�sin � cos �

� − ��2 + 1�sin � cos � �2 cos2 � − sin2 �
� .

�19�

Equation �17� demonstrates that the conductivity is a sum of
the familiar expression assuming no Bragg scattering �i.e.,
Eq. �7�� and an additional term. This additional term is in-
cluded by an amount controlled by �, and it is therefore
useful to plot the field dependence of this quantity. This is
shown in Fig. 2�a� for the case in which �=� /6 �chosen to
match Fig. 1 of Ref. 7� for a range of different breakdown
fields �parametrized by �0
0�=eB0� /m�� and plotted as a
function of magnetic field �parametrized by �
c�
=eB� /m��.

For low field ���� / �1+�2�, where �= �4 cos2 �� /� and
is independent of breakdown field �0. For intermediate fields,
and for �0�1, � rises to a plateau given by �
�4 cos2 � / ����−2���=� / ��−2��. In our example in which
�=� /6, the plateau is at ��9 /2�2 �see Fig. 2�a��. For large
fields, � decreases again and follows ����0 /�2. Thus we
expect that at very low and very high fields the approxima-
tion of no Bragg scattering �the single breakdown orbit� in
Eq. �7� will work well. It works at very low fields because
electrons travel only a very short distance around the Fermi
surface before scattering and so orbit connectivity is largely
irrelevant. It works at very high fields because then the mag-
netic breakdown probability is close to unity. At intermediate
fields � is significant and the effect of magnetic breakdown
and Bragg scattering is important in determining the magne-
totransport.

We now invert the conductivity tensor in Eq. �17� to ob-
tain an expression for the resistivity tensor and find

Π

ωcτ

ω0τ =

Λ

ω0τ =

9
2π2

∆

ω0τ =

FIG. 2. �Color online� The parameters �a� � �Eq. �18��, �b� �
�Eq. �21��, and �c� � �Eq. �22��.
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� = 
0
−1�� + � cos 2� − � + � sin 2�

� + � sin 2� � − � cos 2�
	 , �20�

where

� =
���2 + 1�

1 − 2�
�21�

and

� =
1 + ���2 − 1�

1 − 2�
. �22�

Equations �20�–�22� are the main results of the paper. The
quantities � and � are plotted in Figs. 2�b� and 2�c�. In low
field ���1� ���� and ��1. In large field ���1� �
���0 and ��1+��0. These results can be used to show
that in low field the resistivity tensor is

� = �0 + 
0
−1��Y �23�

while in high fields the resistivity tensor is

� = �0 + 
0
−1�0�Y , �24�

where the matrix Y contains only geometric factors and is
given by

Y = �1 + cos 2� sin 2�

sin 2� 1 − cos 2�
	 . �25�

V. DISCUSSION

The components of the resistivity tensor obtained using
Eqs. �20�–�22� are shown in Fig. 3 for the case of �=� /6 and
0�=30. At high magnetic field the diagonal components of
the resistivity tensor saturate �to a value linear in �0� while
the off-diagonal terms approach the asymptotic values pro-
portional to ��+�0� sin 2� �in agreement with Eq. �24��. As
the magnetic field is decreased all resistivity tensor elements
go through a maximum that becomes sharper with increasing
breakdown field �0. At lower fields they decrease linearly.
The position of the maximum is controlled predominantly by
the behavior of � plotted in Fig. 2.

The components of the resistivity tensor are plotted again
in Fig. 4, though this time for a range of values of break-
down fields �parametrized by �0=0��. �The plot of �xx is
identical to that of Fig. 1�c� in Ref. 7, demonstrating the
agreement of the analytical expressions in Eqs. �20�–�22� and
the earlier numerical work.� The difference between �xx and
�yy reflects the fact that for our considered geometry in Fig.
4 ��=� /6� the open orbits which occur due to Bragg scat-
tering are efficient at carrying current in the y direction. This
difference vanishes when �=� /4.

It is worthwhile to show that the off-diagonal components
of the resistivity tensor do indeed obey Onsager symmetry,
i.e., �xy�B�=�yx�−B�. Onsager symmetry is dependent upon
perfect microscopic reversibility �with the appropriate sign
change in the magnetic field�16 and we find that this is
obeyed even with the presence of magnetic breakdown junc-
tions, despite the apparent “randomization” of the electron
trajectory which occurs at magnetic breakdown junctions.

ρ
α
β

ωcτ

ρyy

ρxx

ρyx

ρxy±γ + 4γ0
π

cos2 ξ sin 2ξ

FIG. 3. The components of the resistivity tensor �plotted in units
of 
0

−1� calculated according to Eqs. �20�–�22� for the case of �
=� /6 and 0�=30.

ρ
x
x

ωcτ

ω0τ =

ρ
y
y

ωcτ

ω0τ =

ρ
x
y

ωcτ

ω0τ =

ρ
y
x

ωcτ

ω0τ =

FIG. 4. �Color online� The components of the resistivity tensor �plotted in units of 
0
−1� calculated according to Eqs. �20�–�22� for the

case of �=� /6.
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Reversal of the magnetic field changes the way in which the
sections of the Fermi surface are connected at the magnetic
breakdown junctions and the result of this is that the connec-
tivity matrix � transforms into its transpose. This has the
effect of making � invariant under a sign change in the mag-
netic field �and is the origin of the modulus sign of the factor
of � in the numerator of Eq. �18��. The net consequence of
this is that Onsager symmetry is preserved.

In summary, in this paper we have derived an analytical
expression for the in-plane components of the resistivity ten-

sor that includes the effect of all the orbits induced by a
combination of Bragg scattering and magnetic breakdown.
Equation �17� demonstrates that approach shows that the
conductivity tensor can be written as a sum of a matrix rep-
resenting the effect of total magnetic breakdown and one
representing a combination of complex electronic trajecto-
ries. Our main result in Eqs. �20�–�22� provides a compact
form for the in-plane components of the resistivity tensor for
this problem which are in a convenient form to compare with
experimental data.
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APPENDIX: DERIVATION OF EQ. (17)

The expression for conductivity from Eq. �13� is


�	 =

0

��
��

+ · ��	
init + ��I − ��−1 · �	

−� �A1�

and as in Ref. 9 the matrix ��I−��−1 is given by

��I − ��−1 =
1

N�
t apr ars a2ps

abps w bpr abp2

ars a2ps t apr

bpr abp2 abps w
� ,

where r=1−bq, s=q+b�p2−q2�, N=r2−a2s2, t=a2s2, and w=b�qr+a2�p2−q2�s�. The function E�
��x� can be simplified be-

cause �x=cos �, �y =sin �, so that

Ex
���� = cos �e��/� = R�e�ı�1/����

Ey
���� = sin �e��/� = I�e�ı�1/���� . �A2�

The vector in Eq. �14� can then be written

��
� =�

���
1

���
2

���
3

���
4
� =�

z��e2ı�a�1 − 1�
− z��e2ı� + b�1�

− ���
1

− ���
2

� �A3�

and that in Eq. �15� as

��
init =�

��i
1

��i
2

��i
3

��i
4
� =�

z−e2ı�a

− z−b

− ��i
1

− ��i
2
� �A4�

with z�= �ı�1 /��−1. The two first and two last entries of each vector differ by a minus sign because these parts of the orbit
are exactly � apart. With this identity we can readily calculate

1

2
��

+ · ��I − ��−1 · �	
− = − ���+

1 �	−
1 + ��+

2 �	−
2 � +

��+
1 �	−

1 �1 − bq� + ��+
2 �	−

2 �1 + aq� + ��+
1 �	−

2 ap − ��+
2 �	−

1 bp

1 − bq + a�q + b�p2 − q2��
. �A5�

The initial contribution can be simplified as follows:
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��
+ · �	

init =���+
1

��+
2

��+
3

��+
4 � ·��	i

1

�	i
2

�	i
3

�	i
4 � =�

�
0

2�

d�0E�
+��0�

a�
2�

�

d�0E�
+��0�

ab�
�

�+2�

d�0E�
+��0�

a2b�
�+2�

2�

d�0E�
+��0�

� ·�
�

�0

2�

d�E	
−���

a−1�
�0

�

d�E	
−���

�ab�−1�
�0

�+2�

d�E	
−���

�a2b�−1�
�0

2�

d�E	
−���

�
=�

�
0

2�

d�0E�
+��0�

a�
2�

�

d�0E�
+��0�

ab�
�

�+2�

d�0E�
+��0�

a2b�
�+2�

2�

d�0E�
+��0�

� ·�
�2�

d�E	
−���

a−1��

d�E	
−���

�ab�−1��+2�

d�E	
−���

�a2b�−1�2�

d�E	
−���

� −�
�

0

2�

d�0E�
+��0�

�
2�

�

d�0E�
+��0�

�
�

�+2�

d�0E�
+��0�

�
�+2�

2�

d�0E�
+��0�

� ·�
��0

d�E	
−���

��0

d�E	
−���

��0

d�E	
−���

��0

d�E	
−���
�

= 2���+
1 �	i

1 + ��+
2 �	i

2 � − �
0

2�

d�0E�
+��0���0

d�E	
−��� . �A6�

Integration of the second term then leads to

��
+ · �	

init = 2���+
1 �	i

1 + ��+
2 �	i

2 � +
��

1 + �2� 1 �

− � 1
	

�	

�A7�

and hence


�	 =

0

1 + �2� 1 �

− � 1
	

�	

+
2
0

��
����+

1 �	i
1 + ��+

2 �	i
2 � − ���+

1 �	−
1 + ��+

2 �	−
2 ��

+
2
0

��
���+

1 �	−
1 �1 − bq� + ��+

2 �	−
2 �1 + aq� + ��+

1 �	−
2 ap − ��+

2 �	−
1 bp

1 − bq + a�q + b�p2 − q2�� � . �A8�

The final result in Eq. �17� is obtained by substituting expressions for ���
1 and ���

2 from Eq. �A3� and for ��i
1 and ��i

2 from Eq.
�A4� and simplifying.
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